Go the following website and download time series data of CO2 emmission by country.
https://www.gapminder.org/data/
Data <- read.csv("co2_emissions_tonnes_per_person.csv")
Data %<>% gather(year, value=emmission, -country, -region)
Data %<>% mutate(year=year %>% substr(2,5) %>% as.numeric())
Data %<>% arrange(country, year)
Data %>% filter(country %in% c('Japan')) %>% tail(30) %>%
kable("latex", booktabs=T, caption="Recent co2 emmission in Japan",
format.args=list(big.mark=",")) %>%
kable_styling(font_size=8, latex_options=c("striped","hold_position"))
country.list <- c("Japan", "China", "United States", "United Kingdom",
"France", "Germany", "Brazil", "Australia", "Kenya")
Data %>% filter(country %in% country.list) %>%
ggplot(aes(year, emmission, color=country)) + geom_point() +
geom_line() + theme(legend.position="right") +
labs(title="co2 emmission in several countries") +
xlab("Year") + ylab("Emmission (tons)")
Data %>% filter(country %in% country.list) %>%
ggplot(aes(year, emmission, fill=country)) + geom_area() +
labs(title="co2 emmission in world") +
xlab("Year") + ylab("Emmission (tons)") + facet_wrap(.~country)
Data %>% group_by(region, year) %>%
summarise(emmission=sum(emmission, na.rm=T)) %>% data.frame() %>%
ggplot(aes(year, emmission, fill=region)) +
geom_area() + labs(title="co2 emmission in world") +
xlab("Year") + ylab("Emmission (tons)") + facet_wrap(.~region)
Data %>% filter(region %in% "Asia") %>%
ggplot(aes(year, emmission, col=country)) +
geom_line() + theme(legend.position="bottom") +
facet_wrap(.~country, ncol=6)
Data %>% filter(region %in% "Asia") %>%
ggplot(aes(year, emmission, col=country)) +
geom_line() + theme(legend.position="bottom") +
xlim(1960,2020) + ylim(0,100) + facet_wrap(.~country, ncol=6)