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POINTS OF SIGNIFICANCE

Significance, P values
and t-tests

The P value reported by tests is a probabilistic
significance, not a biological one.

Bench scientists often perform statistical tests to determine wheth-
er an observation is statistically significant. Many tests report the
P value to measure the strength of the evidence that a result is not
just a likely chance occurrence. To make informed judgments about
the observations in a biological context, we must understand what
the P value is telling us and how to interpret it. This month we will
develop the concept of statistical significance and tests by introduc-
ing the one-sample ¢-test.

To help you understand how statistical testing works, consider the
experimental scenario depicted in Figure 1 of measuring protein
expression level in a cell line with a western blot. Suppose we mea-
sure an expression value of x = 12 and have good reason to believe
(for example, from past measurements) that the reference level is
w =10 (Fig. 1a). What can we say about whether this difference is
due to random chance? Statistical testing can answer this question.
But first, we need to mathematically frame our intuitive understand-
ing of the biological and technical factors that disperse our measure-
ments across a range of values.

We begin with the assumption that the random fluctuations in the
experiment can be characterized by a distribution (Fig. 1b). This
distribution is called the null distribution, and it embodies the null
hypothesis (H,) that our observation is a sample from the pool of
all possible instances of measuring the reference. We can think of
constructing this distribution by making a large number of indepen-
dent measurements of a protein whose mean expression is known
to equal the reference value. This distribution represents the prob-
ability of observing a given expression level for a protein that is being
expressed at the reference level. The mean of this distribution, , is
the reference expression, and its spread is determined by reproduc-
ibility factors inherent to our experiment. The purpose of a statistical
test is to locate our observation on this distribution to identify the
extent to which it is an outlier.

Statistics quantifies the outlier status of an observation by the
probability of sampling another observation from the null distribu-
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Figure 1 | The mechanism of statistical testing. (a-c) The significance

of the difference between observed (x) and reference (u) values (a) is
calculated by assuming that observations are sampled from a distribution
H, with mean u (b). The statistical significance of the observation x is the
probability of sampling a value from the distribution that is at least as far
from the reference, given by the shaded areas under the distribution

curve (c). This is the P value.

THIS MONTH |

Distribution of
expression values

A Repeated observations b
of expression

C Distribution of average
expression values

uox " “ox
s.d. HO
—o— s.e.m.
§ 9 10 11 12 § 9 10 11 12 § 9 10 11 12

Expression Expression

Average expression

Figure 2 | Repeated independent observations are used to estimate the s.d. of
the null distribution and derive a more robust P value. (a) A sample of n =5
observations is taken and characterized by the mean x, with error bars
showing s.d. (s,) and s.e.m. (s,/Vn). (b) The null distribution is assumed to be
normal, and its s.d. is estimated by s,. As in Figure 1b, the population mean
is assumed to be u. (c) The average expression is located on the sampling
distribution of sample means, whose spread is estimated by the s.e.m. and
whose mean is also . The P value of x is the shaded area under this curve.

tion that is as far or farther away from p. In our example, this corre-
sponds to measuring an expression value further from the reference
than x. This probability is the P value, which is the output of com-
mon statistical tests. It is calculated from the area under the distri-
bution curve in the shaded regions (Fig. 1¢c). In some situations we
may care only if x is too big (or too small), in which case we would
compute the area of only the dark (light) shaded region of Figure 1c.

Unfortunately, the P value is often misinterpreted as the prob-
ability that the null hypothesis (H,) is true. This mistake is called
the ‘prosecutor’s fallacy’, which appeals to our intuition and was
so coined because of its frequent use in courtroom arguments. In
the process of calculating the P value, we assumed that H, was true
and that x was drawn from H,. Thus, a small P value (for example,
P =0.05) merely tells us that an improbable event has occurred in
the context of this assumption. The degree of improbability is evi-
dence against H, and supports the alternative hypothesis that the
sample actually comes from a population whose mean is different
than u. Statistical significance suggests but does not imply biological
significance.

At this point you may ask how we arrive at our assumptions about
the null distribution in Figure 1b. After all, in order to calculate P,
we need to know its precise shape. Because experimentally deter-
mining it is not practical, we need to make an informed guess. For
the purposes of this column, we will assume that it is normal. We
will discuss robustness of tests to this assumption of normality in
another column. To complete our model of H,, we still need to esti-
mate its spread. To do this we return to the concept of sampling.

To estimate the spread of H, we repeat the measurement of our
protein’s expression. For example, we might make four additional
independent measurements to make up a sample with n = 5 (Fig. 2a).
We use the mean of expression values (£ = 10.85) as a measure of
our protein’s expression. Next, we make the key assumption that the
s.d. of our sample (s, = 0.96) is a suitable estimate of the s.d. of the
null distribution (Fig. 2b). In other words, regardless of whether the
sample mean is representative of the null distribution, we assume that
its spread is. This assumption of equal variances is common, and we
will be returning to it in future columns.

From our discussion about sampling!, we know that given that
H_ is normal, the sampling distribution of means will also be nor-
mal, and we can use sx/\/ n to estimate its s.d. (Fig. 2¢c). We localize
the mean expression on this distribution to calculate the P value,
analogously to what was done with the single value in Figure 1c. To
avoid the nuisance of dealing with a sampling distribution of means
for each combination of population parameters, we can transform
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Figure 3 | The t and normal distributions. (a) The t distribution has

higher tails that take into account that most samples will underestimate
the variability in a population. The distribution is used to evaluate

the significance of a ¢ statistic derived from a sample of size n and is
characterized by the degrees of freedom, d.f. = n - 1. (b) When n is small, P
values derived from the t distribution vary greatly as n changes.

the mean % to a value determined by the difference of the sample
and population means D = % — u divided by the s.e.m. (s /Vn). This
is called the test statistic.

It turns out, however, that the shape of this sampling distribution
is close to, but not exactly, normal. The extent to which it departs
from normal is known and given by the Student’s ¢ distribution
(Fig. 3a), first described by William Gosset, who published under
the pseudonym ‘Student’ (to avoid difficulties with his employer,
Guinness) in his work on optimizing barley yields. The test statistic
described above is compared to this distribution and is thus called
the t statistic. The test illustrated in Figure 2 is called the one-sample
I-test.

This departure in distribution shape is due to the fact that for most
samples, the sample variance, s %, is an underestimate of the vari-
ance of the null distribution. The distribution of sample variances
turns out to be skewed. The asymmetry is more evident for small #,
where it is more likely that we observe a variance smaller than that
of the population. The ¢ distribution accounts for this underestima-
tion by having higher tails than the normal distribution (Fig. 3a). As
n grows, the t distribution looks very much like the normal, reflect-
ing that the sample’s variance becomes a more accurate estimate.

As a result, if we do not correct for this—if we use the normal
distribution in the calculation depicted in Figure 2c—we will be
using a distribution that is too narrow and will overestimate the
significance of our finding. For example, using the n = 5 sam-
ple in Figure 2b for which ¢ = 1.98, the ¢ distribution gives us
P=0.119. Without the correction built into this distribution, we would
underestimate P using the normal distribution as P = 0.048 (Fig. 3b).
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When # is large, the required correction is smaller: the same
t=1.98 for n = 50 gives P = 0.054, which is now much closer to the
value obtained from the normal distribution.

The relationship between t and P is shown in Figure 3b and can be
used to express P as a function of the quantities on which ¢ depends
(D, s, ). For example, if our sample in Figure 2b had a size of at
least n = 8, the observed expression difference D = 0.85 would be
significant at P < 0.05, assuming we still measured s, = 0.96 (t = 2.50,
P =0.041). A more general type of calculation can identify condi-
tions for which a test can reliably detect whether a sample comes
from a distribution with a different mean. This speaks to the test’s
power, which we will discuss in the next column.

Another way of thinking about reaching significance is to con-
sider what population means would yield P < 0.05. For our example,
these would be ¢t < 9.66 and u > 12.04 and define the range of stan-
dard expression values (9.66-12.04) that are compatible with our
sample. In other words, if the null distribution had a mean within
this interval, we would not be able to reject H; at P = 0.05 on the
basis of our sample. This is the 95% confidence interval introduced
last month, given by u = % + ¥ x s.e.m. (a rearranged form of the
one-sample {-test equation), where ¢*is the critical value of the ¢ sta-
tistic for a given n and P, In our example, n =5, P=0.05 and * =2.78.
We encourage readers to explore these concepts for themselves using
the interactive graphs in Supplementary Table 1.

The one-sample t-test is used to determine whether our samples
could come from a distribution with a given mean (for example,
to compare the sample mean to a putative fixed value u) and for
constructing confidence intervals for the mean. It appears in many
contexts, such as measuring protein expression, the quantity of drug
delivered by a medication or the weight of cereal in your cereal box.
The concepts underlying this test are an important foundation for
future columns in which we will discuss the comparisons across
samples that are ubiquitous in the scientific literature.
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