POINTS OF SIGNIFICANCE

Power and sample size

The ability to detect experimental effects is
undermined in studies that lack power.

Statistical testing provides a paradigm for deciding whether the data
are or are not typical of the values expected when the hypothesis
is true. Because our objective is usually to detect a departure from
the null hypothesis, it is useful to define an alternative hypothesis
that expresses the distribution of observations when the null is false.
The difference between the distributions captures the experimental
effect, and the probability of detecting the effect is the statistical
power.

Statistical power is critically relevant but often overlooked. When
power is low, important effects may not be detected, and in experi-
ments with many conditions and outcomes, such as ‘omics’ studies,
a large percentage of the significant results may be wrong. Figure 1
illustrates this by showing the proportion of inference outcomes in
two sets of experiments. In the first set, we optimistically assume
that hypotheses have been screened, and 50% have a chance for an
effect (Fig. 1a). If they are tested at a power of 0.2, identified as the
median in a recent review of neuroscience literature!, then 80% of
true positive results will be missed, and 20% of positive results will
be wrong (positive predictive value, PPV = 0.80), assuming testing
was done at the 5% level (Fig. 1b).

In experiments with multiple outcomes (e.g., gene expression
studies), it is not unusual for fewer than 10% of the outcomes to
have an a priori chance of an effect. If 90% of hypotheses are null
(Fig. 1a), the situation at a 0.2 power level is bleak—over two-
thirds of the positive results are wrong (PPV = 0.31; Fig. 1b). Even
at the conventionally acceptable minimum power of 0.8, more
than one-third of positive results are wrong (PPV = 0.64) because
although we detect a greater fraction of the true effects (8 out of
10), we declare a larger absolute number of false positives (4.5 out
of 90 nulls).

Fiscal constraints on experimental design, together with
a commonplace lack of statistical rigor, contribute to many
underpowered studies with spurious reports of both false
positive and false negative effects. The consequences of low
power are particularly dire in the search for high-impact
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Figure 1 | When unlikely hypotheses are tested, most positive results of
underpowered studies can be wrong. (a) Two sets of experiments in which 50%
and 10% of hypotheses correspond to a real effect (blue), with the rest being
null (green). (b) Proportion of each inference type within the null and effect
groups encoded by areas of colored regions, assuming 5% of nulls are rejected
as false positives. The fraction of positive results that are correct is the
positive predictive value, PPV, which decreases with a lower effect chance.
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Figure 2 | Inference errors and statistical power. (a) Observations are
assumed to be from the null distribution (H,) with mean w,. We reject H,
for values larger than x* with an error rate a (red area). (b) The alternative
hypothesis (H,) is the competing scenario with a different mean w,. Values
sampled from H, smaller than x* do not trigger rejection of H, and occur
at a rate f3. Power (sensitivity) is 1 - 8 (blue area). (c) Relationship of
inference errors to x*. The color key is same as in Figure 1.

results, when the researcher may be willing to pursue low-
likelihood hypotheses for a groundbreaking discovery (Fig. 1).
One analysis of the medical research literature found that only
36% of the experiments examined that had negative results could
detect a 50% relative difference at least 80% of the time?. More
recent reviews of the literature!? also report that most studies are
underpowered. Reduced power and an increased number of false
negatives is particularly common in omics studies, which test at
very small significance levels to reduce the large number of false
positives.

Studies with inadequate power are a waste of research resources
and arguably unethical when subjects are exposed to potentially
harmful or inferior experimental conditions. Addressing this short-
coming is a priority—the Nature Publishing Group checklist for
statistics and methods (http://www.nature.com/authors/policies/
checklist.pdf) includes as the first question: “How was the sample
size chosen to ensure adequate power to detect a pre-specified
effect size?” Here we discuss inference errors and power to help
you answer this question. We'll focus on how the sensitivity and
specificity of an experiment can be balanced (and kept high) and
how increasing sample size can help achieve sufficient power.

Let’s use the example from last month of measuring a protein’s
expression level x against an assumed reference level 1. We devel-
oped the idea of a null distribution, H,, and said that x was statis-
tically significantly larger than the reference if it exceeded some
critical value x* (Fig. 2a). If such a value is observed, we reject H,,
as the candidate model.

Because H, extends beyond x*, it is possible to falsely reject H,,,
with a probability of & (Fig. 2a). This is a type I error and corre-
sponds to a false positive—that is, inferring an effect when there is
actually none. In good experimental design, o is controlled and set
low, traditionally at = 0.05, to maintain a high specificity (1 - @),
which is the chance of a true negative—that is, correctly inferring
that no effect exists.

Let’s suppose that x > x*, leading us to reject H,. We may have
found something interesting. If x is not drawn from H,, what
distribution does it come from? We can postulate an alternative
hypothesis that characterizes an alternative distribution, H ,, for
the observation. For example, if we expect expression values to be
larger by 20%, H, would have the same shape as H, but a mean
of u, =12 instead of u, = 10 (Fig. 2b). Intuitively, if both of these
distributions have similar means, we anticipate that it will be more
difficult to reliably distinguish between them. This difference
between the distributions is typically expressed by the difference
in their means, in units of their s.d., 0. This measure, given by
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Figure 3 | Decreasing specificity increases power. H; and H, are assumed
normal with o = 1. (a) Lowering specificity decreases the H,, rejection cutoff
x*, capturing a greater fraction of H, beyond x*, and increases the power
from 0.64 to 0.80. (b) The relationship between specificity and power as a
function of x*. The open circles correspond to the scenarios in a.

d = (uy - uy)/ o, is called the effect size. Sometimes effect size is
combined with sample size as the noncentrality parameter, dVn.

In the context of these distributions, power (sensitivity) is defined as
the chance of appropriately rejecting H; if the data are drawn from H ,.
It is calculated from the area of H,, in the H, rejection region (Fig. 2b).
Power is related by 1 - f to the type II error rate, 3, which is the chance
of a false negative (not rejecting H, when data are drawn from H ).

A test should ideally be both specific (low false positive rate, o) and
sensitive (low false negative rate, f8). The a and f3 rates are inversely
related: decreasing arincreases ffand reduces power (Fig. 2c). Typically,
o < f3 because the consequences of false positive inference (in an
extreme case, a retracted paper) are more serious than those of false
negative inference (a missed opportunity to publish). But the balance
between crand S depends on the objectives: if false positives are subject
to another round of testing but false negatives are discarded, 5 should
be kept low.

Let’s return to our protein expression example and see how the mag-
nitudes of these two errors are related. If we set o= 0.05 and assume
normal H, with o= 1, then we reject H, when x > 11.64 (Fig. 3a).
The fraction of H, beyond this cutoff region is the power (0.64).
We can increase power by decreasing specificity. Increasing « to
0.12 lowers the cutoff to x > 11.17, and power is now 0.80. This 25%
increase in power has come at a cost: we are now more than twice as
likely to make a false positive claim (o= 0.12 vs. 0.05).

Figure 3b shows the relationship between o and power for our
single expression measurement as a function of the position of
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Figure 4 | Impact of sample (n) and effect size (d) on power. H, and H,
are assumed normal with o= 1. (a) Increasing n decreases the spread

of the distribution of sample averages in proportion to 1/Yn. Shown are
scenarios at n=1, 3 and 7 for d = 1 and a = 0.05. Right, power as function
of n at four different « values for d = 1. The circles correspond to the three
scenarios. (b) Power increases with d, making it easier to detect larger
effects. The distributions show effect sizes d =1, 1.5 and 2 for n = 3 and

a = 0.05. Right, power as function of d at four different « values for n = 3.
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H, rejection cutoff, x*. The S-shape of the power curve reflects
the rate of change of the area under H, beyond x*. The close cou-
pling between o and power suggests that for u, = 12 the highest
power we can achieve for o < 0.05 is 0.64. How can we improve our
chance to detect increased expression from H, (increase power)
without compromising o (increasing false positives)?

If the distributions in Figure 3a were narrower, their overlap
would be reduced, a greater fraction of H, would lie beyond the
x* cutoff and power would be improved. We can’t do much about
0, although we could attempt to lower it by reducing measurement
error. A more direct way, however, is to take multiple samples.
Now, instead of using single expression values, we formulate null
and alternative distributions using the average expression value
from a sample % that has spread o/Vn (ref. 4).

Figure 4a shows the effect of sample size on power using distri-
butions of the sample mean under H,and H . As n is increased, the
H rejection cutoff is decreased in proportion with the s.e.m.,
reducing the overlap between the distributions. Sample size
substantially affects power in our example. If we average seven
measurements (n = 7), we are able to detect a 10% increase
in expression levels (u, = 11, d = 1) 84% of the time with a =
0.05. By varying n we can achieve a desired combination of
power and « for a given effect size, d. For example, ford =1, a
sample size of n = 22 achieves a power of 0.99 for a=0.01.

Another way to increase power is to increase the size of the
effect we want to reliably detect. We might be able to induce a
larger effect size with a more extreme experimental treatment. As
d is increased, so is power because the overlap between the two
distributions is decreased (Fig. 4b). For example, for o = 0.05
and n = 3, we can detect u, = 11, 11.5 and 12 (10%, 15% and 20%
relative increase; d = 1, 1.5 and 2) with a power 0f 0.53, 0.83 and 0.97,
respectively. These calculations are idealized because the exact shapes
of Hyand H, were assumed known. In practice, because we estimate
population o from the samples, power is decreased and we need a
slightly larger sample size to achieve the desired power.

Balancing sample size, effect size and power is critical to good
study design. We begin by setting the values of type I error (o) and
power (1 - B) to be statistically adequate: traditionally 0.05 and
0.80, respectively. We then determine # on the basis of the smallest
effect we wish to measure. If the required sample size is too large,
we may need to reassess our objectives or more tightly control the
experimental conditions to reduce the variance. Use the interactive
graphs in Supplementary Table 1 to explore power calculations.

When the power is low, only large effects can be detected, and
negative results cannot be reliably interpreted. Ensuring that sample
sizes are large enough to detect the effects of interest is an essential
part of study design.

Martin Krzywinski & Naomi Altman

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper (doi:10.1038/nmeth.2738).
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Erratum: Power and sample size

Martin Krzywinski & Naomi Altman
Nat. Methods 10, 1139-1140 (2013); published online 26 November 2013; corrected after print 26 November 2013

In the print version of this article initially published, the symbol w1, was represented incorrectly in the equation for effect size, d = (u, - u,)/o.
The error has been corrected in the HTML and PDF versions of the article.
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Martin Krzywinski & Naomi Altman
Nat. Methods 10, 1139-1140 (2013); published online 26 November 2013; corrected after print 26 November 2013; corrected after print

3 August 2015

In the version of this article initially published, the terms “sensitivity” and “specificity” and the related descriptors “sensitive” and “specific”
were mistakenly switched in three instances. The errors have been corrected in the HTML and PDF versions of the article.
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